首页 | 本学科首页   官方微博 | 高级检索  
     


The influence of the rotational energy of a flywheel on the load pulse sum during pedalling on a cycle ergometer
Authors:B. Voigt and R. von Kiparski
Affiliation:Institut für Arbeits- und Sozialhygiene (IAS), Karlsruhe, Federal Republic of Germany.
Abstract:Employing seven male subjects, the influence of four different ergometer flywheels with the moments of inertia at the crankshaft (J') = 5.5, 10.5, 16.5, and 19.5 kg.m2 on 6-min load pulse sum (LPS), the heart rate integrated over 6-min was investigated. The J' was demonstrated to influence LPS at each of the corresponding rotational energies of the flywheels (75, 144, 226 and 276 J at 50 rev.min-1) in the four work-load steps (50, 100, 150 and 200 W). Between the values J' = 5.5 kg.m2 and 10.5 kg.m2 the LPS decreases, to rise again in the range J' = 10.5 kg.m2-19.5 kg.m2. For equal work-loads the minimum LPS was reached at a J' of 10.5 kg.m2. For the workloads of 100, 150 and 200 W it was possible to show statistically significant differences. The moment of inertia of ergometer flywheels J has a smoothing effect on the fluctuations of the rotational speed which are unavoidable during work on a cycle ergometer. The flywheel stores the leg forces acting on the pedals as rotational energy and opposes any rotational acceleration. If the J used is too small, equalization of the fluctuations of the rotational speed remains unsatisfactory. Flywheels with larger J require larger torques at the crankshaft for acceleration. For the most effective delivery of work to a cycle ergometer, an optimal rotational energy of the flywheel was found. For equal physical work, smaller or larger rotational energies require a larger expenditure of biological energy. A J' = 11 +/- 2 kg.m2 was incorporated into the draft for the German standard DIN 13,405 -- cycle-type ergometers.
Keywords:Cycle ergometer  Optimal flywheel  Load pulse sum
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号