首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetic characterization of the unisite catalytic pathway of seven beta-subunit mutant F1-ATPases from Escherichia coli
Authors:M K al-Shawi  D Parsonage  A E Senior
Institution:Department of Biochemistry, University of Rochester Medical Center, New York 14642.
Abstract:We have studied the kinetics of "unisite" ATP hydrolysis and synthesis in seven mutant Escherichia coli F1-ATPase enzymes. The seven mutations are distributed over a 105-residue segment of the catalytic nucleotide-binding domain in beta-subunit and are: G142S, K155Q, K155E, E181Q, E192Q, M209I, and R246C. We report forward and reverse rate constants and equilibrium constants in all seven mutant enzymes for the four steps of unisite kinetics, namely (i) ATP binding/release, (ii) ATP hydrolysis/synthesis, (iii) Pi release/binding, and (iv) ADP release/binding. The seven mutant enzymes displayed a wide range of deviations from normal in both rate and equilibrium constants, with no discernible common pattern. Notably, steep reductions in Kd ATP were seen in some cases, the value of Kd Pi was high, and K2 (ATP hydrolysis/synthesis) was relatively unaffected. Significantly, when the data from the seven mutations were combined with previous data from two other E. coli F1-beta-subunit mutations (D242N, D242V), normal E. coli F1, soluble and membranous mitochondrial F1, it was found that linear free energy relationships obtained for both ATP binding/release (log k+1 versus log K1) and ADP binding/release (log k-4 versus log K-4). Two conclusions follow. 1) The seven mutations studied here cause subtle changes in interactions between the catalytic nucleotide-binding domain and substrate ATP or product ADP. 2) The mitochondrial, normal E. coli, and nine total beta-subunit mutant enzymes represent a continuum in which subtle structural differences in the catalytic site resulted in changes in binding energy; therefore insights into the nature of energy coupling during ATP hydrolysis and synthesis by F1-ATPase may be ascertained by detailed studies of this group of enzymes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号