首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Insights into conformation and dynamics of protein GB1 during folding and unfolding by NMR
Authors:Ding Keyang  Louis John M  Gronenborn Angela M
Institution:Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, NIDDK, Building 5, Room 130, Bethesda, MD 20892, USA.
Abstract:Understanding protein stability requires characterization of structural determinants of the folded and unfolded states. Many proteins are capable of populating partially folded states under specific solution conditions. Occasionally, coexistence of the folded and an unfolded state under non- or mildly denaturing conditions can be observed by NMR, allowing us to structurally probe these states under identical conditions. Here we report on a destabilized mutant of the B1 domain of protein G (GB1) whose equilibrium unfolding was systematically investigated. Backbone amide residual dipolar couplings (RDCs), the tryptophan Nepsilon-H resonance and the amide nitrogen transverse relaxation rates (R2s) for varying pH values and different temperatures were measured. The backbone amide RDCs indicate that prior to complete unfolding, two melting hot spots are formed at the turn around T11, L12 and K13 and the N terminus of the helix at A24 and T25. The RDCs for the low pH, thermally unfolded state of GB1 are very small and do not indicate the presence of any native-like structure. Amide nitrogen transverse relaxation rates for GB1 in the folded state at different temperatures exhibit large contributions from exchange processes and the associated dynamics display considerable heterogeneity. Our data provide clear evidence for intermediate conformations and multi-state equilibrium un/folding for this GB1 variant.
Keywords:NMR  protein folding  melting hot spots  folding intermediates  residual dipolar coupling
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号