首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enzymatic dehalogenation of gas phase substrates with haloalkane dehalogenase
Authors:Dravis B C  LeJeune K E  Hetro A D  Russell A J
Institution:Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA.
Abstract:Haloalkane dehalogenase is an enzyme capable of catalyzing the conversion of short-chained (C(2)-C(8)) aliphatic halogenated hydrocarbons to a corresponding primary alcohol. Because of its broad substrate specificity for mono-, di-, and trisubstituted halogenated hydrocarbons and cofactor independence, haloalkane dehalogenases are attractive biocatalysts for gas-phase bioremediation of pollutant halogenated vapor emissions. A solid preparation of haloalkane dehalogenase from Rhodococcus rhodochrous was used to catalyze the dehalogenation reaction of 1-chlorobutane or 1,3-dichloropropane delivered in the gas phase. For optimal gas-phase dehalogenase activity, a relative humidity of 100%, a(w) = 1, was desired. With a 50% reduction in the vapor-phase hydration level, an 80% decrease in enzymatic activity was observed. The enzyme kinetics for the gas-phase substrates obeyed an Arrhenius-"like" behavior and the solid haloalkane dehalogenase preparation was more thermally stable than its water-soluble equivalent. Triethylamine was added to the gaseous reaction environment in efforts to increase the rate of reaction. A tenfold increase in the dehalogenase activity for the vapor-phase substrates was observed with the addition of triethylamine. Triethylamine altered the electrostatic environment of haloalkane dehalogenase via a basic shift in local pH, thereby minimizing the effect of the pH-reducing reaction product on enzyme activity. Both organic phase and solid-state buffers were used to confirm the activating role of the altered ionization state.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号