首页 | 本学科首页   官方微博 | 高级检索  
     


The Fate of Organic Sources of Carbon in Moss‐rich Tundra Soil Microbial Communities: A Laboratory Experimental Study
Authors:O. R. Anderson
Affiliation:Department of Biology and Paleo Environment, Lamont‐Doherty Earth Observatory of Columbia University, , Palisades, New York, 10964
Abstract:Effects of glucose‐carbon supplementation on soil respiration and bacterial and protist biomass were investigated in laboratory studies of three soil samples from Alaskan tundra: spring tussock sample 1 (thin surface moss), spring tussock sample 2 (thick surface moss), and a summer tundra open field sample. Addition of 1% (w/v) glucose solution produced an immediate, pronounced two to three fold increase in respiration above basal rate, which declined over 4 h to baseline levels. Less than 1% (w/w) of glucose‐C supplement was respired during the respiratory spike, relative to the 89 μg/g added. A more substantial amount of the glucose‐C became incorporated in microbial biomass. The total difference in microbial carbon (μg/g) between the experimental treatments and controls without glucose after 1 wk was as follows: spring sample 1 (8), spring sample 2 (31), and summer sample (70). The percent (w/w) of glucose‐C incorporated was: spring sample 1 (5%), spring sample 2 (17%), and summer sample (39%), most attributed to biomass of bacteria and heterotrophic nanoflagellates. Although respiratory response to pulsed glucose‐C was minimal, the overall mean basal rate after 1 wk ranged between 4 and 6 nmol/min/g soil, indicating a significant assimilation and respiration of constituent soil organic carbon.
Keywords:Carbon budget  global warming  microbial biomass  organic enrichment  soil respiration  trophodynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号