首页 | 本学科首页   官方微博 | 高级检索  
     


Ferritin heavy chain-mediated iron homoeostasis regulates expression of IL-10 in Chlamydia trachomatis-infected HeLa cells
Authors:Vardhan Harsh  Gupta Rishein  Jha Rajneesh  Bhengraj Apurb Rashmi  Mittal Aruna
Affiliation:Institute of Pathology, Indian Council of Medical Research ICMR, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi110029, India.
Abstract:Chlamydia trachomatis is the leading cause of sexually transmitted infection worldwide, in which disease outcome is determined by the balance between pro- and anti-inflammatory host immune responses. Iron plays important roles in regulation and enhancement of various pro- and anti-inflammatory cytokines. Earlier studies have established essentiality of iron in C. trachomatis infection; however, there is lack of study wherein modulatory effect of iron regulated protein [FHC (ferritin heavy chain)] in regulation of anti-inflammatory cytokine IL (interleukin)-10 has been investigated. In this study, immunoblotting results showed the up-regulation of FHC in C. trachomatis-infected HeLa cells in comparison with mock (in vitro control). Further secretory IL-10 level was significantly increased (P<0.001) or decreased (P<0.001) in response to iron supplementation [FAC (ferric ammonium citrate)] and depletion [DFO (deferoxamine)], respectively. However, in C. trachomatis-infected HeLa cells, levels of IL-10 remain higher, irrespective of availability of iron in comparison with their respective control. These results showed that secretion of IL-10 and expressions of FHC have concordance. Further, to understand interdependence of IL-10 and iron homoeostasis (regulation), the levels of IL-10 were compared with iron-responsive GFP (green fluorescent protein) expression in HeLa-229 cells. The mean fluorescent intensities of GFP were in accordance with levels of IL-10 in C. trachomatis-infected cells. These results showed the association of secreted IL-10, FHC and iron homoeostasis in C. trachomatis-infected HeLa-229 cells. This study provides insight into host-Chlamydia interaction at the crossroad of iron metabolism and immune responses and may help in realizing the potential of iron homoeostasis modulators in treatment of chronic chlamydial infection.
Keywords:Chlamydia trachomatis  deferoxamine  ferritin  IL‐10  iron response element  transferrin receptor
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号