首页 | 本学科首页   官方微博 | 高级检索  
     


Changes in Protein Content of Goldfish Optic Nerve During Degeneration and Regeneration Following Nerve Crush
Authors:G. W. Perry  D. W. Burmeister  Bernice Grafstein
Affiliation:Department of Physiology, Cornell University Medical College, New York, New York, U.S.A.
Abstract:Abstract: After the goldfish optic nerve was crushed, the total amount of protein in the nerve decreased by about 45% within 1 week as the axons degenerated, began to recover between 2 and 5 weeks as axonal regeneration occurred, and had returned to nearly normal by 12 weeks. Corresponding changes in the relative amounts of some individual proteins were investigated by separating the proteins by two-dimensional gel electrophoresis and performing a quantitative analysis of the Coomassie Brilliant Blue staining patterns of the gels. In addition, labelling patterns showing incorporation of [3H]proline into individual proteins were examined to differentiate between locally synthesized proteins (presumably produced mainly by the glial cells) and axonal proteins carried by fast or slow axonal transport. Some prominent nerve proteins, ON1 and ON2 (50–55 kD, pI ~6), decreased to almost undetectable levels and then reappeared with a time course corresponding to the changes in total protein content of the nerve. Similar changes were seen in a protein we have designated NF (~130 kD, pI ~5.2). These three proteins, which were labelled in association with slow axonal transport, may be neurofilament constituents. Large decreases following optic nerve crush were also seen in the relative amounts of α- and β-tubulin, which suggests that they are localized mainly in the optic axons rather than the glial cells. Another group of proteins, W2, W3, and W4 (35–45 kD, pI 6.5–7.0), which showed a somewhat slower time course of disappearance and were intensely labelled in the local synthesis pattern, may be associated with myelin. A small number of proteins increased in relative amount following nerve crush. These included some, P1 and P2 (35–40 kD, pIs 6.1–6.2) and NT (~50 kD, pI ~5.5), that appeared to be synthesized by the glial cells. Increases were also seen in one axonal protein, B (~45 kD, pI ~4.5), that is carried by fast axonal transport, as well as in two axonal proteins, HA1 and HA2 (~60 and 65 kD respectively, pIs 4.5–5.0), that are carried mainly by slow axonal transport. Other proteins, including actin, that showed no net changes in relative amount (but presumably changed in absolute amount in direct proportion to the changes in total protein content of the nerve), are apparently distributed in both the neuronal and nonneuronal compartments of the nerve.
Keywords:Wallerian degeneration    Nerve regeneration    Goldfish optic nerve    Electrophoresis    Axonal transport    Neurofilament proteins    Thbulin    Actin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号