首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular markers for the E2 and E3 genes controlling flowering and maturity in soybean
Authors:Jin Hee Shin  Suk-Ha Lee
Affiliation:1. Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-921, The Republic of Korea
2. Plant Genomics and Breeding Research Institute, Seoul National University, Seoul, 151-921, Korea
Abstract:Natural variation in flowering time may play a role in the adaptation of plants to various environments, and understanding the genetic basis of flowering and maturity would facilitate the development of early maturing cultivars. Molecular markers for the E2 and E3 loci, which control the time of flowering and maturity in soybean (Glycine max), were developed in this study. Single nucleotide-amplified polymorphism (SNAP) markers were developed from the nonsense mutation in E2 (GmGIa), which is a circadian clock-controlled gene. The E2- and e2-specific SNAP markers were validated using six E2 isolines. The soybean E3 gene is a photoreceptor phytochrome A (GmPhyA3) gene, and a co-dominant marker was designed based on sequence deletions within the E3 allele. A multiplex PCR assay using three primers for the E3 gene allowed allelic discrimination based on the sizes of PCR products. Furthermore, this E3 marker successfully detected two alleles in a single reaction when two types of DNA were pooled. These markers determined the genotypes of our mapping population previously reported to detect flowering quantitative trait loci close to the E2 and E3 loci, confirming that the mutations are responsible for the early flowering phenotype. The use of SNAP markers for E2 and a co-dominant marker for E3 is a simple, fast, and reproducible method, requiring only PCR and agarose gel electrophoresis. The molecular resources developed in this study could accelerate marker-assisted selection and cultivar development for short-season areas in a soybean breeding program.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号