首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Radiation-induced cytotoxicity,DNA damage and DNA repair: Implications for cell survival theory
Authors:S G Swarts  G B Nelson  C A Wallen  K T Wheeler
Institution:(1) Experimental Radiation Oncology, Department of Radiology, Bowman Gray School of Medicine of Wake Forest University, 27103 Winston-Salem, NC, USA
Abstract:Summary The radiosensitivities and the kinetics for removal of radiation-induced DNA damage were compared for proliferative (P) and quiescent (Q) cells of the lines 66 and 67 derived from a mouse mammary adenocarcinoma. As determined from cell survival assays, the 66 and 67 Q cells were more radiosensitive than their 66 and 67 P counterparts. The rank order of their radiosensitivity was: 67 Q > 66 Q ge 67 P > 66 P. Induction of radiation damage in the DNA of these cells, as measured by the alkaline elution technique, was identical for 66 and 67 P and Q cells. The repair of this DNA damage was biphasic for 66 and 67 P and Q cells. The half-times for the fast and slow repair phases in 66 Q cells were identical to those previously measured in 67 Q cells. The half-times of the fast and slow repair phases in 66 P cells were also identical to those previously measured in 67 P cells. However, the half-times for the fast and slow repair phases in 66 and 67 Q cells were longer than those measured in their 66 and 67 P counterparts. The 66 cell data are consistent with our previously published hypothesis that Q cells are more radiosensitive than their corresponding P cells because they repair their radiation-induced DNA damage slower. However, our results are not consistent with hypotheses that attempt to explain the radiosensitivity differences between lines 66 and 67 solely on the basis of measurable induction and repair of DNA damage.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号