Clotrimazole presents anticancer properties against a mouse melanoma model acting as a PI3K inhibitor and inducing repolarization of tumor-associated macrophages |
| |
Affiliation: | 1. Laboratório de Oncobiologia Molecular, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;2. Laboratório de Enzimologia e Controle do Metabolismo, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;3. Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP 21.040-900, Brazil |
| |
Abstract: | The immune system is a key component of tumorigenesis, with the latter promoting the development of cancer, its progression and metastasis. In fact, abundant infiltration of tumor-associated macrophages (TAM), which are M2-like macrophages, has been associated with a poor outcome in most types of cancers. Here, we show that lactate produced by murine melanoma B16F10 cells induces an M2-like profile in cultured macrophages. Further, we demonstrate that clotrimazole (CTZ), an off-target anti-tumor drug, abolishes lactate effects on the activation of macrophages and induces the expression of M1-like markers. We show that clotrimazole has cytotoxic effects on tumor cells by negatively modulating PI3K, which inhibits glycolytic metabolism and leads to a diminishing lactate production by these cells. These effects are more pronounced in cancer cells exposed to conditioned media of M2-polarized macrophages. Moreover, clotrimazole inhibits tumor growth in a murine model of implanted melanoma, reduces lactate content in a tumor microenvironment and decreases vascular endothelial growth factor expression. Finally, clotrimazole drastically diminishes TAM infiltration in the tumors, thereby inducing M1 polarization. Collectively, these findings identify a new antitumor mechanism of clotrimazole by modulating the tumor microenvironment (TME), particularly the activation and viability of TAM. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|