首页 | 本学科首页   官方微博 | 高级检索  
     


Redirecting splicing with bifunctional oligonucleotides
Authors:Jean-Philippe Brosseau  Jean-Fran?ois Lucier  Andrée-Anne Lamarche  Lulzim Shkreta  Daniel Gendron  Elvy Lapointe  Philippe Thibault   éric Paquet  Jean-Pierre Perreault  Sherif Abou Elela  Benoit Chabot
Affiliation:1.Laboratory of Functional Genomics and Research Centre on RNA Biology of the Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada, 2.Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada and 3.Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
Abstract:Ectopic modulators of alternative splicing are important tools to study the function of splice variants and for correcting mis-splicing events that cause human diseases. Such modulators can be bifunctional oligonucleotides made of an antisense portion that determines target specificity, and a non-hybridizing tail that recruits proteins or RNA/protein complexes that affect splice site selection (TOSS and TOES, respectively, for targeted oligonucleotide silencer of splicing and targeted oligonucleotide enhancer of splicing). The use of TOSS and TOES has been restricted to a handful of targets. To generalize the applicability and demonstrate the robustness of TOSS, we have tested this approach on more than 50 alternative splicing events. Moreover, we have developed an algorithm that can design active TOSS with a success rate of 80%. To produce bifunctional oligonucleotides capable of stimulating splicing, we built on the observation that binding sites for TDP-43 can stimulate splicing and improve U1 snRNP binding when inserted downstream from 5′ splice sites. A TOES designed to recruit TDP-43 improved exon 7 inclusion in SMN2. Overall, our study shows that bifunctional oligonucleotides can redirect splicing on a variety of genes, justifying their inclusion in the molecular arsenal that aims to alter the production of splice variants.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号