首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rapid oxidation of ring methyl groups is the primary mechanism of biotransformation of gemfibrozil by the fungus <Emphasis Type="Italic">Cunninghamella elegans</Emphasis>
Authors:Su-Il Kang  Seo-Young Kang  Robert A Kanaly  Eunjung Lee  Yoongho Lim  Hor-Gil Hur
Institution:(1) International Environmental Research Center, Gwangju Institute of Science and Technology, Gwangju, 500-712, Republic of Korea;(2) Department of Genome Systems, Faculty of Bionanoscience, Yokohama City University, Yokohama 236-002, Japan;(3) Department of Bioscience and Biotechnology, and Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea;(4) Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 500-712, Republic of Korea;
Abstract:The hypolipidemic agent gemfibrozil (GEM), which has been studied for its metabolism in humans and animals, was investigated to elucidate its primary metabolism by Cunninghamella elegans. The fungus produced ten metabolites (FM1–FM9 and FM6′) from the biotransformation of GEM. Based on LC/MS/MS and NMR analyses, a major metabolite, FM7, was identified as 2′-hydroxymethyl GEM. FM6 was considered to be 5′-hydroxymethyl GEM, after comparison of results LC/MS, LC/MS/MS, and UV absorption spectra to FM7. The combined concentration of FM6 and FM7 was found to increase up to 0.83 mM by day 2, and then decreased gradually with incubation time, followed by a noticeable increase in the biotransformation product, FM1, up to 0.86 mM by day 15. NMR analyses confirmed that FM1 was 2′,5′-dihydroxymethyl GEM. Further minor oxidations of the aromatic ring and carboxylic acid intermediates were also detected. Based upon these findings, the major fungal metabolic pathway for GEM is likely to occur via production of 2′,5′-dihydroxymethyl GEM from 2′-hydroxymethyl GEM. These relatively rapid and diverse biotransformations of GEM by C. elegans suggest that depending upon conditions, it may also follow a similar biodegradation fate when released into the natural environment.
Keywords:Cunninghamella elegans            Fungal metabolism  Gemfibrozil  Hydroxylation  Hypolipidemic
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号