首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biogeochemical Hotspots in Forested Landscapes: The Role of Vernal Pools in Denitrification and Organic Matter Processing
Authors:Krista A Capps  Regina Rancatti  Nathan Tomczyk  Thomas B Parr  Aram J K Calhoun  Malcolm Hunter Jr
Institution:1. Sustainability Solutions Initiative, University of Maine, Orono, Maine, 04469, USA
2. Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, Maine, 04469, USA
3. Ecology and Environmental Science Program, University of Maine, Orono, Maine, 04469, USA
Abstract:Quantifying spatial and temporal heterogeneity in ecosystem processes presents a challenge for conserving ecosystem function across landscapes. In particular, many ecosystems contain small features that play larger roles in ecosystem processes than their size would indicate; thus, they may represent “hotspots” of activity relative to their surroundings. Biogeochemical hotspots are characterized as small features within a landscape that show comparatively high chemical reaction rates. In northeastern forests in North America, vernal pools are abundant, small features that typically fill in spring with snow melt and precipitation and dry by the end of summer. Ephemeral flooding alters soil moisture and the depth of the soil’s oxic/anoxic boundary, which may affect biogeochemical processes. We studied the effects of vernal pools on leaf-litter decomposition rates, soil enzyme activity, and denitrification in vernal pools to assess whether they function as biogeochemical hotspots. Our results indicate that seasonal inundation enhanced leaf-litter decomposition, denitrification, and enzyme activity in vernal pools relative to adjacent forest sites. Leaves in seasonally flooded areas decomposed faster than leaves in terra firme forest sites. Flooding also influenced the C, N, and P stoichiometry of decomposing leaf litter and explained the variance in microbial extracellular enzyme activity for phosphatase, β-d-glucosidase, and β-N-acetylglucosaminidase. Additionally, denitrification rates were enhanced by seasonal flooding across all of the study pools. Collectively, these data suggest that vernal pool ecosystems may function as hotspots of leaf-litter decomposition and denitrification and play a significant role in decomposition and nutrient dynamics relative to their size.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号