2-O-(2-Aminoethyl)-myo-inositol 1,4,5-trisphosphate as a novel ligand for conjugation: physicochemical properties and synthesis of a new Ins(1,4,5)P(3) affinity matrix |
| |
Authors: | Riley Andrew M Dozol Helene Spiess Bernard Potter Barry V L |
| |
Affiliation: | Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK. |
| |
Abstract: | 2-O-(2-Aminoethyl)-Ins(1,4,5)P(3), (5), a novel derivative of the Ca(2+)-mobilising second messenger d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)], was synthesised from myo-inositol. 5 was found to be a potent mobiliser of intracellular Ca(2+), and an Ins(1,4,5)P(3) affinity matrix synthesised from 5 was effective at selectively binding N-terminal fragments of the Ins(1,4,5)P(3) receptor containing the intact Ins(1,4,5)P(3) binding site. The microprotonation scheme for 5 was resolved and the related constants were determined in comparison with Ins(1,4,5)P(3) and another reactive Ins(1,4,5)P(3) analogue 1-O-(2-aminoethyl-1-phospho)-Ins(4,5)P(2), (2a), by potentiometric and NMR titration methods. The (31)P and (1)H NMR titration curves for compound 5 and Ins(1,4,5)P(3) are remarkably close, indicating analogous acid-base properties and intramolecular interactions for the two compounds. The 1-phosphate-modified Ins(1,4,5)P(3) derivative 2a, on the contrary, behaves as a bisphosphorylated rather than a trisphosphorylated inositol. Thus, 5 is a new reactive Ins(1,4,5)P(3) analogue of considerable potential for investigation of the chemical biology of Ins(1,4,5)P(3)-mediated cellular signalling. |
| |
Keywords: | Affinity matrix Inositol phosphates Signal transduction 31P NMR Potentiometry |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|