首页 | 本学科首页   官方微博 | 高级检索  
   检索      


DNA damage-induced inhibition of rRNA synthesis by DNA-PK and PARP-1
Authors:Anne S Calkins  J Dirk Iglehart  Jean-Bernard Lazaro
Institution:1.Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA and 2.Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
Abstract:RNA synthesis and DNA replication cease after DNA damage. We studied RNA synthesis using an in situ run-on assay and found ribosomal RNA (rRNA) synthesis was inhibited 24 h after UV light, gamma radiation or DNA cross-linking by cisplatin in human cells. Cisplatin led to accumulation of cells in S phase. Inhibition of the DNA repair proteins DNA-dependent protein kinase (DNA-PK) or poly(ADP-ribose) polymerase 1 (PARP-1) prevented the DNA damage-induced block of rRNA synthesis. However, DNA-PK and PARP-1 inhibition did not prevent the cisplatin-induced arrest of cell cycle in S phase, nor did it induce de novo BrdU incorporation. Loss of DNA-PK function prevented activation of PARP-1 and its recruitment to chromatin in damaged cells, suggesting regulation of PARP-1 by DNA-PK within a pathway of DNA repair. From these results, we propose a sequential activation of DNA-PK and PARP-1 in cells arrested in S phase by DNA damage causes the interruption of rRNA synthesis after DNA damage.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号