首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Amino Acids and mTOR Mediate Distinct Metabolic Checkpoints in Mammalian G1 Cell Cycle
Authors:Mahesh Saqcena  Deepak Menon  Deven Patel  Suman Mukhopadhyay  Victor Chow  David A Foster
Institution:Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America.; Institut de Génétique et Développement de Rennes, France,
Abstract:

Objective

In multicellular organisms, cell division is regulated by growth factors (GFs). In the absence of GFs, cells exit the cell cycle at a site in G1 referred to as the restriction point (R) and enter a state of quiescence known as G0. Additionally, nutrient availability impacts on G1 cell cycle progression. While there is a vast literature on G1 cell cycle progression, confusion remains – especially with regard to the temporal location of R relative to nutrient-mediated checkpoints. In this report, we have investigated the relationship between R and a series of metabolic cell cycle checkpoints that regulate passage into S-phase.

Methods

We used double-block experiments to order G1 checkpoints that monitor the presence of GFs, essential amino acids (EEAs), the conditionally essential amino acid glutamine, and inhibition of mTOR. Cell cycle progression was monitored by uptake of 3H]-thymidine and flow cytometry, and analysis of cell cycle regulatory proteins was by Western-blot.

Results

We report here that the GF-mediated R can be temporally distinguished from a series of late G1 metabolic checkpoints mediated by EAAs, glutamine, and mTOR – the mammalian/mechanistic target of rapamycin. R is clearly upstream from an EAA checkpoint, which is upstream from a glutamine checkpoint. mTOR is downstream from both the amino acid checkpoints, close to S-phase. Significantly, in addition to GF autonomy, we find human cancer cells also have dysregulated metabolic checkpoints.

Conclusion

The data provided here are consistent with a GF-dependent mid-G1 R where cells determine whether it is appropriate to divide, followed by a series of late-G1 metabolic checkpoints mediated by amino acids and mTOR where cells determine whether they have sufficient nutrients to accomplish the task. Since mTOR inhibition arrests cells the latest in G1, it is likely the final arbiter for nutrient sufficiency prior to committing to replicating the genome.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号