首页 | 本学科首页   官方微博 | 高级检索  
   检索      


SIN-1 cytotoxicity to PC12 cells is mediated by thiol-sensitive short-lived substances generated through SIN-1 decomposition in culture medium
Authors:Kanako Konishi  Nobuo Watanabe  Takao Arai
Institution:aDepartment of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
Abstract:As a generator of peroxynitrite (ONOO), 3-morpholinosydnonimine (SIN-1) is widely used in the study of oxidative/nitrosative stress in cultured cells, although controversy exists regarding active species responsible for cytotoxicity. In this study, we report that unstable thiol-sensitive substances, generated from the reaction of SIN-1 with components in culture medium, play a crucial role in SIN-1 cytotoxicity in PC12 cells. Exposure of cells to culture medium obtained after almost complete SIN-1 decomposition at 37 °C for 2 h demonstrated almost the same degree of cytotoxicity as did fresh SIN-1. The cytotoxicity of SIN-1-decomposed medium largely depended on serum, decayed with time, and could be completely abolished by the addition of thiols. Degradation of synthetic ONOO in the culture medium did not reproduce the unstable cytotoxicity. The presence of superoxide dismutase (SOD) during SIN-1 decomposition prevented the formation of the cytotoxic substances, whereas SOD had no protection against the cytotoxicity itself, suggesting a crucial role of simultaneously generated superoxide and nitric oxide in the formation of the toxicants, but not in their cytotoxic action. The cytotoxicity of fresh SIN-1 is dramatically suppressed in a basal medium (Hanks balanced salt), suggesting that the cytotoxicity of fresh SIN-1 also requires components of culture medium. These results suggest that SIN-1 cytotoxicity in PC12 cells is mediated via the generation of cytotoxic substances in the medium during its decomposition.
Keywords:Oxidative/nitrosative stress  Nitrosation  NO donor  Peroxynitrite
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号