首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Human osteoblasts exhibit sexual dimorphism in their response to estrogen on microstructured titanium surfaces
Authors:Berger  Michael B  Cohen  David J  Olivares-Navarrete  Rene  Williams  Joseph K  Cochran  David L  Boyan  Barbara D  Schwartz  Zvi
Institution:1.Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
;2.Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milano, Italy
;3.Instituto Cajal, CSIC, CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
;
Abstract:Disruption of axonal transport plays a pivotal role in diabetic neuropathy. A sex-dimorphism exists in the incidence and symptomatology of diabetic neuropathy; however, no studies so far have addressed sex differences in axonal motor proteins expression in early diabetes as well as the possible involvement of neuroactive steroids. Interestingly, recent data point to a role for mitochondria in the sexual dimorphism of neurodegenerative diseases. Mitochondria have a fundamental role in axonal transport by producing the motors’ energy source, ATP. Moreover, neuroactive steroids can also regulate mitochondrial function. Here, we investigated the impact of short-term diabetes in the peripheral nervous system of male and female rats on key motor proteins important for axonal transport, mitochondrial function, and neuroactive steroids levels. We show that short-term diabetes alters mRNA levels and axoplasm protein contents of kinesin family member KIF1A, KIF5B, KIF5A and Myosin Va in male but not in female rats. Similarly, the expression of peroxisome proliferator-activated receptor γ co-activator-1α, a subunit of the respiratory chain complex IV, ATP levels and the key regulators of mitochondrial dynamics were affected in males but not in females. Concomitant analysis of neuroactive steroid levels in sciatic nerve showed an alteration of testosterone, dihydrotestosterone, and allopregnanolone in diabetic males, whereas no changes were observed in female rats. These findings suggest that sex-specific decrease in neuroactive steroid levels in male diabetic animals may cause an alteration in their mitochondrial function that in turn might impact in axonal transport, contributing to the sex difference observed in diabetic neuropathy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号