首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of magnesium on cruciform extrusion in supercoiled DNA.
Authors:M Y Vologodskaia  A V Vologodskii
Affiliation:Department of Chemistry, New York University, 31 Washington Place, New York, NY, 10003, USA.
Abstract:Recently, it was reported that Mg2+greatly facilitates cruciform extrusion in the short palindromes of supercoiled DNA, thereby allowing the formation of cruciform structures in vivo. Because of the potential biological importance of this phenomenon, we undertook a broader study of the effect of Mg2+on a cruciform extrusion in supercoiled DNA. The method of two-dimensional gel electrophoresis was used to detect the cruciform extrusion both in the absence and in the presence of these ions. Our results show that Mg2+shifts the cruciform extrusion in the d(CCC(AT)16GGG) palindrome to a higher, rather than to a lower level of supercoiling. In order to study possible sequence-specific properties of the short palindromes for which the unusual cruciform extrusion in the presence Mg2+was reported, we constructed a plasmid with a longer palindromic region. This region bears the same sequences in the hairpin loops and four-arm junction as the short palindrome, except that the short stems of the hairpins are extended. The extension allowed us to overcome the limitation of our experimental approach which cannot be used for very short palindromes. Our results show that Mg2+also shifts the cruciform extrusion in this palindrome to a higher level of supercoiling. These data suggest that cruciform extrusion in the short palindromes at low supercoiling is highly improbable. We performed a thermodynamic analysis of the effect of Mg2+on cruciform extrusion. The treatment accounted for the effect of Mg2+on both free energy of supercoiling and the free energy of cruciform structure per se. Our analysis showed that although the level of supercoiling required for the cruciform extrusion is not reduced by Mg2+, the ions reduce the free energy of the cruciform structure.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号