Action of multiple base excision repair enzymes on the 2'-deoxyribonolactone |
| |
Authors: | Faure Virginie Saparbaev Murat Dumy Pascal Constant Jean-François |
| |
Affiliation: | LEDSS-UMR 5616, ICMG-FR 2607, BP 53, Université Joseph Fourier, 38041 Grenoble Cedex 9, France. |
| |
Abstract: | Free radical attack on the sugar-phosphate backbone generates oxidized apurinic/apyrimidinic (AP) residues in DNA. 2'-deoxyribonolactone (dL) is a C1'-oxidized AP site damage generated by UV and gamma-irradiation, and certain anticancer drugs. If not repaired dL produces G-->A transitions in Escherichia coli. In the base excision repair (BER) pathway, AP endonucleases are the major enzymes responsible for 5'-incision of the regular AP site (dR) and dL. DNA glycosylases with associated AP lyase activity can also efficiently cleave regular AP sites. Here, we report that dL is a substrate for AP endonucleases but not for DNA glycosylases/AP lyases. The kinetic parameters of the dL-incision were similar to those of the dR. DNA glycosylases such as E. coli formamidopyrimidine-DNA glycosylase, mismatch-specific uracil-DNA glycosylase, and human alkylpurine-DNA N-glycosylase bind strongly to dL without cleaving it. We show that dL cross-links with the human proteins 8-oxoguanine-DNA (hOGG1) and thymine glycol-DNA glycosylases (hNth1), and dR cross-links with Nth and hNth1. These results suggest that dL and dR induced genotoxicity might be strengthened by BER pathway in vivo. |
| |
Keywords: | Reactive oxygen species Ionizing radiation Oxidative DNA damage Protein/DNA cross-links Apurinic/apyrimidinic site Oxidized abasic site Base excision repair AP endonuclease DNA glycosylase AP lyase |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|