首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Altered spatial calcium regulation enhances electrical heterogeneity in the failing canine left ventricle: implications for electrical instability
Authors:Iyer Vivek  Heller Victoria  Armoundas Antonis A
Institution:Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York, USA.
Abstract:Myocytes across the left ventricular (LV) wall of the mammalian heart are known to exhibit heterogeneity of electrophysiological properties; however, the transmural variation of cellular electrophysiology and Ca(2+) homeostasis in the failing LV is incompletely understood. We studied action potentials (APs), the L-type calcium (Ca(2+)) current (I(Ca,L)), and intracellular Ca(2+) transients (Ca(2+)](i)) of subendocardial (Endo), midmyocardial (Mid), and subepicardial (Epi) tissue layers in the canine normal and tachycardia pacing-induced failing left ventricles. Heart failure (HF) was associated with significant prolongation of the AP duration in Mid myocytes. There were no differences in I(Ca,L) density in normal Endo, Mid, and Epi myocytes, whereas in the failing heart, I(Ca,L) density was downregulated by 45% and 26% (at +10 mV) in Endo and Mid myocytes, respectively. The rates of sarcoplasmic reticulum (SR) Ca(2+) release and decay of the Ca(2+)](i) were slowed, and the amplitude of the Ca(2+)](i) was depressed in Endo and Epi myocytes isolated from failing, compared with normal, hearts. Experiments in sodium (Na(+))-free solutions showed that Epi and Mid myocytes of the failing ventricle exhibit a greater reliance on the Na(+)-Ca(2+) exchanger to remove cytosolic Ca(2+) than myocytes isolated from normal hearts. Simulation studies in Endo, Mid, and Epi canine myocytes demonstrate the importance of L-type current density and SR Ca(2+) uptake in modulating the potentially arrhythmogenic repolarization in HF. In conclusion, these results demonstrate that spatially heterogeneous decreases in I(Ca,L) and defective cytosolic Ca(2+) removal contribute to the altered Ca(2+)](i) and AP profiles across the canine failing LV. These distinct electrophysiological features in myocytes from a failing heart contribute to a characteristic electrogram arising from increased dispersion of refractoriness across the LV, which may result in significant arrhythmogenic sequellae.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号