首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Epithelial Barrier Resistance is Increased by the Divalent Cation Zinc in Cultured MDCKII Epithelial Monolayers
Authors:Georgina Carr  Jamie A Wright  Nicholas L Simmons
Institution:Epithelial Research Group, ICAMB, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE24HH, UK.
Abstract:Topical zinc applications promote wound healing and epithelialization. "Leaky" MDCKII epithelia exposed to apical ZnCl? (10 mM) showed a time-dependent increase (t (0.5) 22.2 ± 2.7 min) of transepithelial resistance (R (t)) from 82.3 ± 2.4 Ω cm2 to 1,551 ± 225.6 Ω cm2; the increase was dose-dependent, being observed at 3 mM but not at 1 mM. Basal Zn2+ applications also increased epithelial resistance (at 10 mM to 323 ± 225.6 Ω cm2). The linear current-voltage relationship in control epithelia changed after apical 10 mM ZnCl? to show rectification. Voltage deflections resulting from inward currents showed time-dependent relaxation (basal potential difference (p.d.)-positive), with outward currents being time-independent. Cation selectivity was tested after apical ZnCl? elevated resistance; both the NaCl:mannitol (basal replacement) dilution p.d. and the choline:Na bi-ionic p.d. decreased (P(Na)/P(Cl) from 4.9 to 2.3 and P(Na)/P(choline) from 3.8 to 2.1, respectively). Transepithelial paracellular basal to apical ??Ca fluxes increased approximately twofold when driven by a basal positive Na:NMDG bi-ionic p.d., but with basal 10 mM ZnCl?, ??Ca fluxes decreased approximately twofold. Neither ZO-1 nor occludin distribution was altered after ~2-h exposure to apical 10 mM ZnCl?. However, claudin-2, though present at the tight junction, increased within the cell. Increased epithelial barrier resistance by Zn2+ is due to modification of the paracellular pathway, most probably by multiple mechanisms.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号