24, 25-dihydroxycholecalciferol but not 25-hydroxycholecalciferol suppresses apolipoprotein A-I gene expression |
| |
Authors: | Wehmeier Kent R Alamir Abdul-Razzak Sultan Senan Haas Michael J Wong Norman C W Mooradian Arshag D |
| |
Affiliation: | Division of Endocrinology, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL, United States. |
| |
Abstract: | AimsLigands for the vitamin D receptor (VDR) regulate apolipoprotein A-I (apo A-I) gene expression in a tissue-specific manner. The vitamin D metabolite 24, 25-dihydroxycholecalciferol (24, 25-(OH)2D3) has been shown to possess unique biological effects. To determine if 24, 25-(OH)2D3 modulates apo A-I gene expression, HepG2 hepatocytes and Caco-2 intestinal cells were treated with 24, 25-(OH)2D3 or its precursor 25-OHD3.Main methodsApo A-I protein levels and mRNA levels were measured by Western and Northern blotting, respectively. Changes in apo A-I promoter activity were measured using the chlorampenicol acetytransferase assay.Key findingsTreatment with 24, 25-(OH)2D3, but not 25-OHD3, inhibited apo A-I secretion in HepG2 and Caco-2 cells and apo A-I mRNA levels and apo A-I promoter activity in HepG2 cells. To determine if 24, 25-(OH)2D3 represses apo A-I gene expression through site A, the nuclear receptor binding element that is essential for VDRs effects on apo A-I gene expression, HepG2 cells were transfected with plasmids containing or lacking site A. While the site A-containing plasmid was suppressed by 24, 25-(OH)2D3, the plasmid lacking site A was not. Likewise, treatment with 24, 25-(OH)2D3 suppressed reporter gene expression in cells transfected with a plasmid containing site A in front of a heterologous promoter. Finally, antisense-mediated VDR depletion failed to reverse the silencing effects of 24, 25-(OH)2D3 on apo A-I expression.SignificanceThese results suggest that the vitamin D metabolite 24, 25-(OH)2D3 is an endogenous regulator of apo A-I synthesis through a VDR-independent signaling mechanism. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|