首页 | 本学科首页   官方微博 | 高级检索  
     


Lack of Association of a Spontaneous Mutation of the Chrm2 Gene with Behavioral and Physiologic Phenotypic Differences in Inbred Mice
Authors:Ming Ding   Jennifer Arnold   Jeremy Turner   Vickram Ramkumar   Larry F Hughes   Rita A Trammell   Linda A Toth
Affiliation:1Departments of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois;2Departments of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois;3Department of Psychology, Illinois College Jacksonville, Illinois;4Departments of Medicine, Southern Illinois University School of Medicine, Springfield, Illinois
Abstract:The nucleotide substitution C797T in the Chrm2 gene causes substitution of leucine for proline at position 266 (P266L) of the CHRM2 protein. Because Chrm2 codes for the type 2 muscarinic receptor, this mutation could influence physiologic and behavioral phenotypes of mice. Chrm2 mRNA was not differentially expressed in 2 brain regions with high cholinergic innervation in a mouse strain that does (BALB/cByJ) or does not (C57BL/6J) have the mutation. In addition, strains of mice with and without the C797T point mutation in Chrm2 did not differ significantly in muscarinic binding properties. Variation across strains was detected in terms of acoustic startle, prepulse inhibition, and the physiologic effects of the muscarinic agonist oxotremorine. However, interstrain differences in these measures did not correlate with the presence of the mutation. Although we were unable to associate a measurable phenotype with the Chrm2 mutation, assessment of the mutation on other genetic backgrounds or in the context of other traits might reveal differential effects. Therefore, despite our negative findings, evaluation of characteristics that involve muscarinic function should be undertaken with caution when comparing mice with different alleles of the Chrm2 gene.Abbreviations: M2R, type 2 muscarinic receptor; NMS, N-methylscopolamine; OXO, oxotremorine; PPI, prepulse inhibition; RI, recombinant inbredAcetylcholine, a crucial neurotransmitter in both the central and peripheral nervous systems, acts through 2 major types of receptors: muscarinic and nicotinic. Muscarinic acetylcholine receptors are members of the superfamily of G protein-coupled receptors.17mRNA and protein for the type 2 muscarinic receptor (M2) are present in many peripheral and central sites in the nervous system and peripheral target organs. M2R mediates a complex combination of postsynaptic and presynaptic events in noncholinergic and cholinergic neurons, respectively.9The M2R is encoded by the gene Chrm2. The proline at position 266 and surrounding residues of the Chrm2 gene are relatively conserved across several species, including human, rat, mouse, and swine (http://www.ncbi.nlm.nih.gov/). However, a nucleo­tide substitution (C797T) has been identified in several strains of inbred mice (Mouse Genome Informatics SNP query for Chrm2; http://www.informatics.jax.org/searches). This nucleotide substitution results in an amino acid substitution, P266L, in the protein. Proline is the only amino acid that contains a secondary amino group and forms tertiary peptide bonds. Because of this attribute, substitution of leucine for proline could cause alloste­ric alterations in proteins, with potential structural or functional consequences.Allosteric modulation is a recognized regulatory mechanism of muscarinic receptors.17,21 For example, introduction of a point mutation (Asn to Tyr) at position 410 (the junction of transmembrane domain 6 and the 3rd intracellular loop) of the human M2R generated a constitutively active receptor with altered receptor–G-protein coupling in response to agonist administration.23 Single-nucleotide polymorphisms in the human Chrm2 gene are implicated in responses to visual stimuli requiring attention, working memory, and response selection.8,15,16 In addition, a common Chrm2 polymorphism has been associated with major depression in women in some studies6,35 but not others.5 Furthermore, Chrm2 has been implicated in nicotine addiction; Chrm2 single-nucleotide polymorphisms may be associated with the general possibility of becoming addicted, personality traits that predispose the person to becoming addicted, or altered regulation of cholinergic systems that affect the smoker''s response to nicotine and its addictive properties.22These reports suggest that mouse strains that bear the Chrm2 mutation, as compared with strains that do not, potentially provide a unique model for exploring mechanisms by which Chrm2 variants may affect cholinergic mechanisms and associated physiologic processes in both brain and the periphery. We report here on studies conducted to determine whether the C797T Chrm2 mutation confers a detectable phenotypic difference in M2R-related processes in mice.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号