首页 | 本学科首页   官方微博 | 高级检索  
   检索      


p53-based Cancer Therapy
Authors:David P Lane  Chit Fang Cheok  Sonia Lain
Institution:1p53 Laboratory (A-Star) 8A Biomedical Grove Immunos Singapore 138648;2Department of Microbiology, Tumor and Cell biology, Karolinska Institutet Stockholm SE-171 77 Sweden
Abstract:Inactivation of p53 functions is an almost universal feature of human cancer cells. This has spurred a tremendous effort to develop p53 based cancer therapies. Gene therapy using wild-type p53, delivered by adenovirus vectors, is now in widespread use in China. Other biologic approaches include the development of oncolytic viruses designed to replicate and kill only p53 defective cells and also the development of siRNA and antisense RNA''s that activate p53 by inhibiting the function of the negative regulators Mdm2, MdmX, and HPV E6. The altered processing of p53 that occurs in tumor cells can elicit T-cell and B-cell responses to p53 that could be effective in eliminating cancer cells and p53 based vaccines are now in clinical trial. A number of small molecules that directly or indirectly activate the p53 response have also reached the clinic, of which the most advanced are the p53 mdm2 interaction inhibitors. Increased understanding of the p53 response is also allowing the development of powerful drug combinations that may increase the selectivity and safety of chemotherapy, by selective protection of normal cells and tissues.Thirty years of research on p53 have produced a detailed understanding of its structure and function. The almost universal loss of p53 activity in tumors has spurred an enormous effort to develop new cancer treatments based on this fact. Sophisticated animal models have shown that activation of the p53 response in even advanced tumors can be curative (Martins et al. 2006; Ventura et al. 2007; Xue et al. 2007). The p53 gene therapy, Gendicine, is approved in China and its US counterpart, Advexin, has shown activity in number of clinical trials. The p53 protein level is raised in many tumors by virtue of an increase in the protein''s half life and this tumor specific alteration in p53 processing has attracted tumor immunologists, who are now testing a number of p53 based vaccines in cancer patients (Speetjens et al. 2009).In more conventional approaches a range of small druglike molecules targeting the p53 system have been developed and several are now in clinical trials. Of critical importance has been the development of small-molecule inhibitors of the p53–Mdm2 protein interaction such as the Nutlins (Vassilev et al. 2004), which have shown activity against human xenografts in preclinical models. Advanced structural approaches have provided compelling support for the idea that some mutant p53 proteins can be targets for small molecules that would cause them to regain wild-type function (Joerger et al. 2006). Cell based screening methods have identified small molecules that can activate both mutant and wild-type p53 proteins in tumor cells to induce apoptosis. These screens, and RNAi based approaches, have revealed many new targets for therapy in the p53 pathway. In an exciting new approach, that has been validated in other tumor suppressor pathways, the search is on for targets in pathways that will show synthetic lethal interactions with loss of p53 function. Finally drug combinations have been developed that can selectively kill cancer cells that lack p53 function while protecting normal cells (Sur et al. 2009). The next few years hold out the prospect of new p53 based therapies that will be of wide application in cancer and other diseases.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号