首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Intracellular accumulation of mercury enhances P450 CYP1A1 expression and Cl- currents in cultured shark rectal gland cells
Authors:Ke Qingen  Yang Yinke  Ratner Martha  Zeind John  Jiang Canwen  Forrest John N  Xiao Yong-Fu
Institution:Stem Cell Research Laboratory, Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA.
Abstract:The effects of acute and subchronic exposure to mercury on the Cl- current (ICl) were investigated in cultured shark rectal gland (SRG) cells. The effects of intracellular accumulation of mercury on cytochrome P450 (P450) were also assessed. Bath perfusion of a cocktail solution containing forskolin, 1-isobutyl-3-methylxanthine, and 8-bromoadenosine monophosphate enhanced ICl. Addition of 10 microM HgCl2 significantly inhibited the cAMP-activated ICl (p < 0.05, n = 11). Intracellular dialysis with ATP gamma S did not prevent the inhibitory effect of mercury on ICl. In contrast, incubation of SRG cells with 10 microM HgCl2 for 48 hrs markedly increased ICl (p < 0.01, n = 12). Dephosphorylation of the channel by intracellular dialysis with phosphatase I and II abolished the mercury-incubated increase in ICl. The P450-mediated metabolite of arachidonic acid, 11,12-epoxyeicosatrienoic acid (11,12-EET), significantly increased ICl. However, application of 11,12-dihydroxyeicosatrienoic acid (11,12-DHT) did not alter ICl. Mercury incubation for 48 hrs did not alter the protein expression of Cl- channels, but caused an induction of CYP1A1 in cultured SRG cells. In addition, co-incubation of SRG cells with mercury and the P450 inhibitor clotrimazole prevented the mercury-incubated increase in ICl. Our results demonstrate that acute and subchronic application of mercury has opposing effects on ICl in cultured SRG cells. The acute effect of mercury on ICl may result from mercury blockade of Cl- channels. The subchronic effect of mercury on ICl may be due to an induction of P450 CYP1A1 and its mediated metabolites, but not due to an over-expression of Cl- channels.
Keywords:Rectal gland cell  Mercury  Cl channel  CYP1A1  Epoxyeicosatrienoic acid
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号