首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of critical structural elements of UDP-sugar substrates and certain cysteine residues of a vertebrate hyaluronan synthase
Authors:Pummill Philip E  DeAngelis Paul L
Affiliation:Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
Abstract:The hyaluronan (HA) synthases catalyze the addition of two different monosaccharides from UDP-sugar substrates to the linear heteropolysaccharide chain. To accomplish this task, the HA synthases must be able to bind and to transfer from both UDP-sugar substrates. Until now, it has been impossible to distinguish between these two abilities. We have created a mutant of xlHAS1, a HA synthase from Xenopus laevis, that allows for the examination of the enzyme's ability to bind substrate only. The ability of different compounds to protect the xlHAS1(C337S) mutant enzyme from loss of activity due to treatment with N-ethylmaleimide, a cysteine-modifying reagent, yields information on the relative affinity of a variety of nucleotides and nucleotide-sugars. We have observed that the substrate binding selectivity is more relaxed than the specificity of catalytic transfer. The only attribute that appears to be absolutely required for binding is a nucleotide containing two phosphates complexed with magnesium ion. The role of certain cysteine residues in catalysis was also evaluated. Cys307 of xlHAS1 may play a role in catalysis or in maintaining structure. Mutation of Cys337 raises the UDP-GlcUA Michaelis constant (K(m)), suggesting that this residue participates in UDP-GlcUA substrate binding or in catalytic complex formation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号