首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of ACTH action on cultured bovine adrenal cortical cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin through a redistribution of cholesterol
Authors:M J DiBartolomeis  C Williams  C R Jefcoate
Abstract:The conversion of cholesterol to cortisol by cultured bovine adrenal cortical cells is stimulated 6-fold by adrenocorticotropin and is limited by the movement of cholesterol to the mitochondria (DiBartolomeis, M.J., and Jefcoate, C.R. (1984) J. Biol. Chem. 259, 10159-10167). Exposure of confluent cultures to the potent environmental toxicant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (10(-8)M), for 24 h prior to adrenocorticotropin (ACTH) addition decreased the rate of ACTH-stimulated steroidogenesis but did not affect the basal rate. TCDD was more effective against stimulation at 10(-11) M ACTH (4-fold) than at 10(-7) M ACTH (10%), consistent with an increase in EC50 for ACTH. Stimulation of bovine adrenal cortical cells by cAMP was similarly decreased by TCDD. In both cases the effectiveness of TCDD increased with time of exposure to the stimulant. The transfer of cholesterol to mitochondria in intact cells was quantitated by means of the 2-h accumulation of mitochondrial cholesterol in the presence of aminoglutethimide, an inhibitor of cholesterol side chain cleavage. Although cholesterol accumulated in the presence of ACTH (13 to 28 micrograms/mg), pretreatment of cells with TCDD caused a decrease in mitochondrial cholesterol (13 to 8 micrograms/mg). The effect of TCDD was produced relatively rapidly (t1/2 approximately 4 h). In absence of TCDD, the mitochondria of ACTH-stimulated cells also eventually lose cholesterol (after 2 h). It is concluded that TCDD pretreatment may increase the presence of a protein(s) that cause mitochondrial cholesterol depletion when the cells are stimulated by ACTH or cAMP. TCDD-enhanced cholesterol efflux from mitochondria diminishes cholesterol side chain cleavage when mitochondrial cholesterol is sufficiently depleted (after 2-4 h).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号