首页 | 本学科首页   官方微博 | 高级检索  
   检索      


N-Terminal domain of annexin 2 regulates Ca(2+)-dependent membrane aggregation by the core domain: a site directed mutagenesis study
Authors:Ayala-Sanmartin J  Gouache P  Henry J P
Institution:Centre National de la Recherche Scientifique, Unité de Biologie Cellulaire et Moléculaire de la Sécrétion, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France. ayala@ibpc.fr
Abstract:Annexin 2 binds and aggregates biological membranes in a Ca(2+)-dependent manner. This protein exists as a monomer (p36) or as a heterotetramer (p90) in which two p36 chains are associated with a dimer of p11, a member of the S100 protein family. Protein kinase C phosphorylates the protein at the level of the N-terminal tail on serines 11 and 25, thereby modifying its oligomeric structure and its properties of membrane aggregation. To analyze these effects, the properties of a series of mutants in which serines 11 and 25 were replaced by alanine and/or glutamic acid were investigated. The affinity for p11 light chain was decreased in the S11E mutants. Glutamic acid residues in positions 11 or 25 did not change membrane binding, either in the tetrameric or in the monomeric form. On the other hand, these mutations affected the aggregation properties of the two forms. For the tetramer, the aggregation efficiency was decreased but not the Ca(2+) sensitivity, whereas the latter was affected in the case of the monomer. The effects were stronger in the S11E mutants, and they were cumulative in the double mutant. They suggest a different conformation of the N-terminal domain in the mutants (and in the phosphorylated protein), a hypothesis which is supported by proteolysis experiments. This conformational change would affect aggregation by the monomer through a dimerization step.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号