首页 | 本学科首页   官方微博 | 高级检索  
     


Dimethylthiourea protects against mitochondrial oxidative damage induced by cisplatin in liver of rats
Authors:dos Santos Neife Aparecida Guinaim  Martins Nádia Maria  Curti Carlos  Pires Bianchi Maria de Lourdes  dos Santos Antonio Cardozo
Affiliation:

aDepartamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Avenida do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil

bDepartamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Avenida do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil

Abstract:Cisplatin is one of the most effective chemotherapeutic agents. However, at higher doses liver injury may occur. The purpose of this study was to explore whether the hydroxyl radical scavenger dimethylthiourea (DMTU) protects against cisplatin-induced oxidative damage in vivo and to define the mitochondrial pathways involved in cytoprotection. Adult male Wistar rats (200–220 g) were divided into four groups of eight animals each. The control group was treated only with an intraperitoneal (i.p.) injection of saline solution (1 ml/100 g body weight). The DMTU group was given only DMTU (500 mg/kg body weight, i.p), followed by 125 mg/kg body weight, i.p. (twice a day) until sacrifice. The cisplatin group was given a single injection of cisplatin (10 mg/kg body weight, i.p.). The DMTU + cisplatin group was given DMTU (500 mg/kg body weight, i.p.), just before the cisplatin injection (10 mg/kg body weight, i.p.), followed by injections of DMTU (125 mg/kg body weight, i.p.) twice a day until sacrifice (72 h after the treatment). DMTU did not present any direct effect on mitochondria and substantially inhibited cisplatin-induced mitochondrial damage in liver, therefore preventing elevation of AST and ALT serum levels. DMTU protected against (a) decreased hepatic ATP levels; (b) lipid peroxidation; (c) cardiolipin oxidation; (d) sulfhydryl protein oxidation; (e) mitochondrial membrane rigidification; (f) GSH oxidation; (g) NADPH oxidation; (h) apoptosis. Results suggest that antioxidants, particularly hydroxyl radical scavengers, protect liver mitochondria against cisplatin-induced oxidative damage. Several mitochondrial changes were delineated and proposed as interesting targets for cytoprotective strategy.
Keywords:Cisplatin   Cytoprotection   Liver   Mitochondria   ROS   DMTU
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号