首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells
Authors:Sang-Eun Oh  Bruce E Logan
Institution:(1) Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA;(2) The Penn State Hydrogen Energy Center, The Pennsylvania State University, University Park, PA 16802, USA
Abstract:Power generation in microbial fuel cells (MFCs) is a function of the surface areas of the proton exchange membrane (PEM) and the cathode relative to that of the anode. To demonstrate this, the sizes of the anode and cathode were varied in two-chambered MFCs having PEMs with three different surface areas (A PEM=3.5, 6.2, or 30.6 cm2). For a fixed anode and cathode surface area (A An=A Cat=22.5 cm2), the power density normalized to the anode surface area increased with the PEM size in the order 45 mW/m2 (A PEM=3.5 cm2), 68 mW/m2 (A PEM=6.2 cm2), and 190 mW/m2 (A PEM=30.6 cm2). PEM surface area was shown to limit power output when the surface area of the PEM was smaller than that of the electrodes due to an increase in internal resistance. When the relative cross sections of the PEM, anode, and cathode were scaled according to 2A Cat=APEM=2A An, the maximum power densities of the three different MFCs, based on the surface area of the PEM (A PEM=3.5, 6.2, or 30.6 cm2), were the same (168±4.53 mW/m2). Increasing the ionic strength and using ferricyanide at the cathode also increased power output.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号