首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Deciphering the synergism of endogenous glycoside hydrolase families 1 and 9 from Coptotermes gestroi
Authors:João Paulo L Franco Cairo  Leandro C Oliveira  Cristiane A Uchima  Thabata M Alvarez  Ana Paula da S Citadini  Júnio Cota  Flávia Costa Leonardo  Ana M Costa-Leonardo  Marcelo F Carazzolle  Fernando F Costa  Gonçalo AG Pereira  Fabio M Squina
Institution:1. Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, nº 10000, 13083-970 Campinas, SP, Brazil;2. Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes da Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil;3. Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil;4. Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil;5. Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP, Brazil;1. Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil;2. Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil;3. Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, SP, Brazil;1. Institute of Resource Biology and Biotechnology, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan 430074, China;2. College of Life Science, South-central University for Nationalities, Wuhan 430074, China;3. Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;4. Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan 430068, China;5. Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, 00076 Aalto, Finland;1. Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil;2. Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil;1. Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany;2. Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany;3. Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany;4. Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany;5. Genome Analysis Group, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany;3. Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway;4. Forest and Landscape, University of Copenhagen, DK-1958 Frederiksberg C, Denmark;5. the Department of Biotechnology, NOBIPOL, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;6. the Department of Food Science and Technology, BOKU, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria;1. Department of Chemistry, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil;2. Department of Biochemistry, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil;3. Carlos Chagas Institute, Fiocruz, Curitiba, PR 81350-010, Brazil;4. Department of Biology, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil;5. Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP 13083-100, Brazil
Abstract:Termites can degrade up to 90% of the lignocellulose they ingest using a repertoire of endogenous and symbiotic degrading enzymes. Termites have been shown to secrete two main glycoside hydrolases, which are GH1 (EC 3.2.1.21) and GH9 (EC 3.2.1.4) members. However, the molecular mechanism for lignocellulose degradation by these enzymes remains poorly understood. The present study was conducted to understand the synergistic relationship between GH9 (CgEG1) and GH1 (CgBG1) from Coptotermes gestroi, which is considered the major urban pest of São Paulo State in Brazil. The goal of this work was to decipher the mode of operation of CgEG1 and CgBG1 through a comprehensive biochemical analysis and molecular docking studies. There was outstanding degree of synergy in degrading glucose polymers for the production of glucose as a result of the endo-β-1,4-glucosidase and exo-β-1,4-glucosidase degradation capability of CgEG1 in concert with the high catalytic performance of CgBG1, which rapidly converts the oligomers into glucose. Our data not only provide an increased comprehension regarding the synergistic mechanism of these two enzymes for cellulose saccharification but also give insight about the role of these two enzymes in termite biology, which can provide the foundation for the development of a number of important applied research topics, such as the control of termites as pests as well as the development of technologies for lignocellulose-to-bioproduct applications.
Keywords:Termite  Glycoside hydrolase  Molecular docking  Synergistic interaction  APTS"}  {"#name":"keyword"  "$":{"id":"kwrd0040"}  "$$":[{"#name":"text"  "_":"8-aminopyreno-1  3  6-trisulfonic acid  BIN"}  {"#name":"keyword"  "$":{"id":"kwrd0050"}  "$$":[{"#name":"text"  "_":"integral sugarcane bagasse  CD"}  {"#name":"keyword"  "$":{"id":"kwrd0060"}  "$$":[{"#name":"text"  "_":"circular dichroism  CMC"}  {"#name":"keyword"  "$":{"id":"kwrd0070"}  "$$":[{"#name":"text"  "_":"carboxymethyl cellulose  CZE"}  {"#name":"keyword"  "$":{"id":"kwrd0080"}  "$$":[{"#name":"text"  "_":"capillary zone electrophoresis  DNS"}  {"#name":"keyword"  "$":{"id":"kwrd0090"}  "$$":[{"#name":"text"  "_":"3  5-dinitrosalicylic acid  DS"}  {"#name":"keyword"  "$":{"id":"kwrd0100"}  "$$":[{"#name":"text"  "_":"degree of synergism  GH"}  {"#name":"keyword"  "$":{"id":"kwrd0110"}  "$$":[{"#name":"text"  "_":"glycoside hydrolase  GOD"}  {"#name":"keyword"  "$":{"id":"kwrd0120"}  "$$":[{"#name":"text"  "_":"glucose oxidase  IMAC"}  {"#name":"keyword"  "$":{"id":"kwrd0130"}  "$$":[{"#name":"text"  "_":"immobilized metal affinity chromatography  PASB"}  {"#name":"keyword"  "$":{"id":"kwrd0140"}  "$$":[{"#name":"text"  "_":"phosphoric acid pretreated sugarcane bagasse
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号