首页 | 本学科首页   官方微博 | 高级检索  
     


A temperature‐dependent conformational change of NADH oxidase from Thermus thermophilus HB8
Authors:Eric D. Merkley  Valerie Daggett  William W. Parson
Affiliation:1. Department of Biochemistry, University of Washington, Seattle, Washington;2. Department of Bioengineering, University of Washington, Seattle, Washington
Abstract:Using molecular dynamics simulations and steady‐state fluorescence spectroscopy, we have identified a conformational change in the active site of a thermophilic flavoenzyme, NADH oxidase from Thermus thermophilus HB8 (NOX). The enzyme's far‐UV circular dichroism spectrum, intrinsic tryptophan fluorescence, and apparent molecular weight measured by dynamic light scattering varied little between 25 and 75°C. However, the fluorescence of the tightly bound FAD cofactor increased approximately fourfold over this temperature range. This effect appears not to be due to aggregation, unfolding, cofactor dissociation, or changes in quaternary structure. We therefore attribute the change in flavin fluorescence to a temperature‐dependent conformational change involving the NOX active site. Molecular dynamics simulations and the effects of mutating aromatic residues near the flavin suggest that the change in fluorescence results from a decrease in quenching by electron transfer from tyrosine 137 to the flavin. Proteins 2012. © 2011 Wiley Periodicals, Inc.
Keywords:thermophiles  thermophilic enzymes  Thermus thermophilus  flavoproteins  NADH oxidase  fluorescence  fluorescence quenching  electron transfer  temperature effects  molecular dynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号