首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Development of a liquid chromatography/mass spectrometry-based drug accumulation assay in Pseudomonas aeruginosa
Authors:Hongliang Cai  Kelly Rose  Steve Dunham
Institution:a Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, Michigan Laboratories, Ann Arbor, MI 48105, USA
b Molecular Technology, Pfizer Global Research and Development, Ann Arbor, MI 48105, USA
c Antibacterial Pharmacology, Pfizer Global Research and Development, Ann Arbor, MI 48105, USA
Abstract:Bacterial resistance to antibiotic therapy remains a worldwide problem. In Pseudomonasaeruginosa, rates of efflux confer inherent resistance to many antimicrobial agents, including fluoroquinolones, due to a high level of expression and a relatively high turnover number of the efflux pumps in gram-negative bacteria. To understand the roles of efflux pumps in both the influx and efflux of compounds in P. aeruginosa and to aid the chemistry compound design by bridging in vitro enzymatic binding data (IC50 values) with whole cell results (MIC numbers), a collaborative effort was put forward to validate a series of bacterial penetration/accumulation assays for assessment of intracellular drug concentration. Initially, using 2-(4-dimethylaminostyryl)-1-ethylpyridinium cation (DMP) as the tracer, a 96-well fluorescence assay was established to measure the time-dependent accumulation of DMP in wild-type (PAO1), MexABOprM deletion (PAO200), and MexABOprM-MexCDOprJ-MexJKL:FRT deletion mutants (PAO314). At steady state, the order of DMP accumulation was PAO314 > PAO200 > PAO1. Subsequently, the established assay conditions were applied to a radiolabeled assay format using 3H-labeled ciprofloxacin. At the concentration tested, the accumulation of 3H]ciprofloxacin approached a plateau after 15 min and the amount of accumulation in PAO314 was higher (∼2- to 10-fold) than that in PAO1. Finally, with an additional step of cell lysis, a liquid chromatography/mass spectrometry-based assay was established with ciprofloxacin with (i) superior sensitivity (the detection limit can be as low as 0.24 ng/ml for ciprofloxacin) and (ii) the ability to monitor cold or nonfluorescent compounds in a drug discovery setting.
Keywords:Bacterial penetration  Bacterial accumulation  Bacterial efflux  Pseudomonas aeruginosa  LC/MS  Ciprofloxacin
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号