首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Surface activation of the cell adhesion fragment of fibronectin
Authors:M A Schwarz  R L Juliano
Institution:Department of Pharmacology and the Graduate School of Biomedical Sciences, University of Texas Medical School, Houston, TX 77030, USA
Abstract:One of the earliest events in the adhesion of fibroblasts to a substratum is the recognition by the cells of macromolecular adhesive factors, such as fibronectin. This early event is followed by a complex series of cell alterations leading to adhesion and spreading. To identify cell surface components involved in the initial cell-fibronectin recognition step, we have employed an assay involving latex particles coated with radiolabelled plasma Fibronectin (Fn). In previous studies from this laboratory (Harper & Juliano , J cell biol 87 (1980) 755) 28], we demonstrated that Fn-mediated adhesion of CHO cells is temperature-dependent, cation-dependent and sensitive to cytoskeletal disrupting agents; by contrast, binding of 3H-Fn beads was unaffected by these factors, indicating that this process reflects binding and recognition events at the cell surface which are independent of cytoskeletal and metabolic activity. Biological specificity of 3H-Fn bead-to-cell binding was confirmed by the ability of anti-Fn antisera to completely block the process. To examine surface components which may mediate binding we treated Fn beads with purified glycosaminoglycans (GAGs) or glycolipids prior to incubation with cells. Among the GAGs tested, heparin, heparan sulfate and dermatan sulfate blocked bead binding in a dose-related fashion with heparin being most potent. The gangliosides GT1, and GM1, also inhibited bead binding. However, treatment of cells with neuraminidase had no effect on bead binding while subsequent analysis of treated cells by thin layer chromatography revealed a drastic reduction in the amount of GM3, the predominant CHO cell ganglioside. CHO cells were also incubated with a panel of proteolytic enzymes to study the possible role of cell surface proteins or glycoproteins in Fn bead binding. We found 3H-Fn bead binding to be quite sensitive to pretreatment with thermolysin, pronase, and papain but only moderately sensitive to treatment with trypsin. From our findings we suggest: (1) binding of Fn beads to CHO cells reflects an early step in the adhesion process; (2) glycolipids may block bead binding but are probably not the endogenous binding site for Fn; (3) protease sensitive components (glycoproteins or proteoglycans) may be more likely candidates as cell surface-binding sites for Fn.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号