首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A loop involving catalytic chain residues 230-245 is essential for the stabilization of both allosteric forms of Escherichia coli aspartate transcarbamylase
Authors:S A Middleton  J W Stebbins  E R Kantrowitz
Institution:Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02167.
Abstract:The allosteric transition of Escherichia coli aspartate transcarbamylase involves significant alterations in structure at both the quaternary and tertiary levels. On the tertiary level, the 240s loop (residues 230-245 of the catalytic chain) repositions, influencing the conformation of Arg-229, a residue near the aspartate binding site. In the T state, Arg-229 is bent out of the active site and may be stabilized in this position by an interaction with Glu-272. In the R state, the conformation of Arg-229 changes, allowing it to interact with the beta-carboxylate of aspartate, and is stabilized in this position by a specific interaction with Glu-233. In order to ascertain the function of Arg-229, Glu-233, and Glu-272 in the catalytic and cooperative interactions of the enzyme, three mutant enzymes were created by site-specific mutagenesis. Arg-229 was replaced by Ala, while both Glu-233 and Glu-272 were replaced by Ser. The Arg-229----Ala and Glu-233----Ser enzymes exhibit 10,000-fold and 80-fold decreases in maximal activity, respectively, and they both exhibit a 2-fold increase in the aspartate concentration at half the maximal observed velocity, S]0.5. The Arg-229----Ala enzyme still exhibits substantial homotropic cooperativity, but all cooperativity is lost in the Glu-233----Ser enzyme. The Glu-233----Ser enzyme also shows a 4-fold decrease in the carbamyl phosphate S]0.5, while the Arg-229----Ala enzyme shows no change in the carbamyl phosphate S]0.5 compared to the wild-type enzyme. The Glu-272 to Ser mutation results in a slight reduction in maximal activity, an increase in S]0.5 for both aspartate and carbamyl phosphate, and reduced cooperativity. Analysis of the isolated catalytic subunits from these three mutant enzymes reveals that in each case the changes in the kinetic properties of the isolated catalytic subunit are similar to the changes caused by the mutation in the holoenzyme. PALA was able to activate the Glu-233----Ser enzyme, at low aspartate concentrations, even though the mutant holoenzyme did not exhibit any cooperativity, indicating that cooperative interactions still exist between the active sites in this enzyme. It is proposed that Glu-233 of the 240s loop helps create the high-activity-high-affinity R state by positioning the side chain of Arg-229 for aspartate binding while Glu-272 helps stabilize the low-activity-low-affinity T state by positioning the side chain of Arg-229 so that it cannot interact with aspartate.(ABSTRACT TRUNCATED AT 400 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号