首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stochastic population dynamics of clonal plants: Numerical experiments with ramet and genet models
Authors:Ove Eriksson
Institution:(1) Department of Botany, Stokholm University, S-106 91 Stokholm, Sweden
Abstract:Dynamics of ramer and genet populations were analyzed by use of stochastic matrix models. Based on field data, population development and extinction rates during 50 simulated years were estimated for ramet populations of three speciesPotentilla anserina, Rubus saxatilis andLinnaea borealis. Only small initial populations (below 125–250 ramets), experienced a detectable risk of extinction within this time interval. ForP. anserina andR. saxatilis, population increase occurred in some simulations despite negative average growth rates. A model for stochastic genet dynamics was constructed by combining field data and hypothesized parameter values. Growth rate and population structure were insensitive to variation in disturbance intensity and frequency, whereas variation in recruitment affected population structure but only to a minor extent growth rate. Decreasing recruitment causes extinction of genet populations, but the time-scale for the decline is in the magnitude of centuries for initial genet populations of about 1000 individuals. Dynamics of genets in clonal plants thus incorporate processes occurring on widely different scales. Some implications of the results for models of population dynamics in long-lived clonal plants are discussed.
Keywords:demography  disturbance  matrix models  population persistence  recruitment
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号