首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heme transfer between phospholipid membranes and uptake by apohemoglobin
Authors:M Y Rose  R A Thompson  W R Light  J S Olson
Abstract:The incorporation of CO-heme into single bilayer, egg lecithin vesicles was examined by following the spectral changes that occur when the porphyrin becomes embedded in the membranes. The rate of CO-heme uptake by liposomes is extremely fast (t1/2 less than or equal to 20 ms at 10 degrees C), and the maximum extent is roughly 1 heme/5 phospholipid molecules. This limiting stoichiometry is due to unfavorable electrostatic interactions between the propionate groups of the bound CO-heme. This effect was treated theoretically by attenuating the intrinsic heme partitioning equilibrium constant with an exponential term reflecting the surface potential of the membranes. The surface potential was assumed to be proportional to the concentration of CO-heme in the membranes, and the final expression is Kp = Kop exp-AHb/VpCp], where Kp is the observed partition constant; Kop, the intrinsic constant; Hb, the concentration of bound heme in the suspension; Vp, the partial molar volume of egg lecithin; Cp, the concentration of lipid phosphate; and A, an empirical constant representing the capacitance of the membrane for heme. For the analysis of kinetic data, the electrostatic term is assumed to apply only to the membrane dissociation rate constant, k-1, and not the association rate constant, k1. The dissociation rate was measured independently either by following the transfer of CO-heme from one vesicle fraction to another or by monitoring heme efflux from the membranes and incorporation into apohemoglobin at high protein concentrations. The data for all three sets of experiments, heme uptake, transfer, and incorporation into globin at 10 degrees C, were fitted quantitatively to the partitioning mechanism using A = 15 M-1, Kop = 5 X 10(5), k1 = 2 X 10(6) s-1, and k0(-1) = 4 s-1. Thus, heme can spontaneously migrate across lipid-water interfaces and hence diffuse rapidly from the mitochondrial inner membrane where it is synthesized to the rough endoplasmic reticulum where it is incorporated into hemoglobin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号