Regulation of pulmonary surfactant secretion in the developing lizard,Pogona vitticeps |
| |
Authors: | Sullivan Lucy C Orgeig Sandra Daniels Christopher B |
| |
Affiliation: | Department of Environmental Biology, Adelaide University, Adelaide, SA 5005, Australia. sandra.orgreig@adelaide.edu.au |
| |
Abstract: | Pulmonary surfactant is a mixture of lipids and proteins that is secreted by alveolar type II cells in the lungs of all air-breathing vertebrates. Pulmonary surfactant functions to reduce the surface tension in the lungs and, therefore, reduce the work of breathing. In mammals, the embryonic maturation of the surfactant system is controlled by a host of factors, including glucocorticoids, thyroid hormones and autonomic neurotransmitters. We have used a co-culture system of embryonic type II cells and lung fibroblasts to investigate the ability of dexamethasone, tri-iodothyronine (T(3)), adrenaline and carbamylcholine (carbachol) to stimulate the cellular secretion of phosphatidylcholine in the bearded dragon (Pogona vitticeps) at day 55 (approx. 92%) of incubation and following hatching. Adrenaline stimulated surfactant secretion both before and after hatching, whereas carbachol stimulated secretion only at day 55. Glucocorticoids and triiodothyronine together stimulated secretion at day 55 but did not after hatching. Therefore, adrenaline, carbachol, dexamethasone and T(3), are all involved in the development of the surfactant system in the bearded dragon. However, the efficacy of the hormones is attenuated during the developmental process. These differences probably relate to the changes in the cellular environment during development and the specific biology of the bearded dragon. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|