首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spike-timing dependent synaptic plasticity: a phenomenological framework
Authors:Kistler Werner M
Institution:(1) Department of Neuroscience, Faculty of Medicine and Health Sciences, Erasmus University Rotterdam, The Netherlands, NL
Abstract: In this paper a phenomenological model of spike-timing dependent synaptic plasticity (STDP) is developed that is based on a Volterra series-like expansion. Synaptic weight changes as a function of the relative timing of pre- and postsynaptic spikes are described by integral kernels that can easily be inferred from experimental data. The resulting weight dynamics can be stated in terms of statistical properties of pre- and postsynaptic spike trains. Generalizations to neurons that fire two different types of action potentials, such as cerebellar Purkinje cells where synaptic plasticity depends on correlations in two distinct presynaptic fibers, are discussed. We show that synaptic plasticity, together with strictly local bounds for the weights, can result in synaptic competition that is required for any form of pattern formation. This is illustrated by a concrete example where a single neuron equipped with STDP can selectively strengthen those synapses with presynaptic neurons that reliably deliver precisely timed spikes at the expense of other synapses which transmit spikes with a broad temporal distribution. Such a mechanism may be of vital importance for any neuronal system where information is coded in the timing of individual action potentials. Received: 23 January 2002 / Accepted: 28 March 2002 Correspondence to: W.M. Kistler (e-mail: kistler@anat.fgg.eur.nl Fax: +31 10 408 5459)
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号