一类神经传播方程的特征差分方法和最佳阶l^2误差估计 |
| |
引用本文: | 那顺布和. 一类神经传播方程的特征差分方法和最佳阶l^2误差估计[J]. 生物数学学报, 2009, 0(3): 470-478 |
| |
作者姓名: | 那顺布和 |
| |
作者单位: | -广东水利电力职业技术学院基础部,广东广州510635 |
| |
基金项目: | 广东省自然科学基金(8451063502000019) |
| |
摘 要: | 给出矩形域上一类神经传播方程的特征差分,利用沿特征线方向构造差分逼近格式的方法和技巧.对给定的模型进行离散数值逼近和数值分析.特别是在沿特征线方向构造离散差分格式的过程中,可能会出现离散点在定义域之外的问题.本文提供了一个新的有效的差分逼近的处理方法,得到了该方法的三。一模误差估计.
|
关 键 词: | 神经传播方程 特征差分方法 误差估计 |
Characteristics Difference Methods for a Kind of Neurve Conduction Equation and Optimal Order l^2 Error Estimates |
| |
Affiliation: | NASHUN Bu-he (Guangdong Technical College of Water Resources and Electric Engineering Department of Basic Courses, Guangzhou Guangdong 510635 China) |
| |
Abstract: | By means of the method for constructing difference approach on the characteristic direction, a numberical analysis and discrete approach are given for the characteristic difference of neurve conduction equation on rectangles. Especially, owing to the thorny problem that some discrete points may drop out the domain, the authors present a new difference approach method and obtain error estimates in discrete l^2- model. |
| |
Keywords: | Neurve conduction equation Characteristics difference Error estimates |
本文献已被 维普 等数据库收录! |