首页 | 本学科首页   官方微博 | 高级检索  
     


A differentiable,periodic function for pulsatile cardiac output based on heart rate and stroke volume
Authors:Stevens Scott A  Lakin William D  Goetz Wolfgang
Affiliation:School of Science, The Behrend College, Penn State Erie, Erie, PA 16563, USA. sas56@psu.edu
Abstract:Many mathematical models of human hemodynamics, particularly those which describe pressure and flow pulses throughout the circulatory system, require as specified input a modeling function which describes cardiac output in terms of volume per unit time. To be realistic, this cardiac output function should capture, to the greatest extent possible, all relevant features observed in measured physical data. For model analysis purposes, it is also highly desirable to have a model function that is continuous, differentiable, and periodic. This paper addresses both classes of needs by developing such a function. Physically, the present function provides an accurate model for flow into the ascending aorta. It is completely specified by a minimal number of standard input parameters associated with left ventricle dynamics, including heart rate, mean cardiac output, and an estimation of the peak-to-mean flow ratio. Analytically, it can be expressed as a product of two continuous, differentiable and periodic factors. Further, the Fourier expansion of this model function is shown to be a finite Fourier series, and explicit closed-form expressions are given for the non-zero coefficients in this series.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号