首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The actin-binding protein capulet genetically interacts with the microtubule motor kinesin to maintain neuronal dendrite homeostasis
Authors:Medina Paul M B  Worthen Ryan J  Forsberg Lawrence J  Brenman Jay E
Institution:Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America.
Abstract:

Background

Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation.

Methodology/Principal Findings

From a Drosophila forward genetic screen, we identified a mutation in capulet-encoding a conserved actin-binding protein-that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer''s models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other.

Conclusions/Significance

The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer''s and Parkinson''s cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号