首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Population synchrony in small-world networks
Authors:Ranta Esa  Fowler Mike S  Kaitala Veijo
Institution:Integrative Ecology Unit, Department of Biological and Environmental Sciences, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland.
Abstract:Network topography ranges from regular graphs (linkage between nearest neighbours only) via small-world graphs (some random connections between nodes) to completely random graphs. Small-world linkage is seen as a revolutionary architecture for a wide range of social, physical and biological networks, and has been shown to increase synchrony between oscillating subunits. We study small-world topographies in a novel context: dispersal linkage between spatially structured populations across a range of population models. Regular dispersal between population patches interacting with density-dependent renewal provides one ecological explanation for the large-scale synchrony seen in the temporal fluctuations of many species, for example, lynx populations in North America, voles in Fennoscandia and grouse in the UK. Introducing a small-world dispersal kernel leads to a clear reduction in synchrony with both increasing dispersal rate and small-world dispersal probability across a variety of biological scenarios. Synchrony is also reduced when populations are affected by globally correlated noise. We discuss ecological implications of small-world dispersal in the frame of spatial synchrony in population fluctuations.
Keywords:small-world  dispersal  synchrony  Moran  network
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号