首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Exercise training decreases plasma leptin levels and the expression of hepatic leptin receptor-a, -b, and, -e in rats
Authors:Siham Yasari  Donghao Wang  Denis Prud’homme  Marek Jankowski  Jolanta Gutkowska  Jean-Marc Lavoie
Institution:1. Department of Kinesiology, University of Montreal, Montreal, Canada
2. Behavioural and Metabolic Research Unit, Montfort Hospital, University of Ottawa, 713, Montreal Road, Pavilion B, 1st Floor, Ottawa, ON, K1K 0T2, Canada
3. Research Center, Cardiovascular Biochemistry Laboratory, CHUM-H?tel-Dieu, University of Montreal, Montreal, Canada
Abstract:In addition to acting in the central nervous system, leptin also acts on peripheral tissues such as liver to provide a protection against lipid accretion. Previous evidence from human and animal model indicates that exercise training reduces circulating leptin levels beyond the changes in adiposity levels. Because liver is one of the main peripheral organs for leptin action, this present study was designed to determine whether leptin receptors expression in liver is changed by exercise training. Female rats trained (TR) or kept sedentary (Sed) for 8 weeks were submitted either to a standard (SD) diet for 8 weeks or for 6 weeks followed by 2 weeks of high-fat (HF) or high-carbohydrate (HC) feeding. Food intake, adiposity levels, circulating plasma leptin and insulin concentrations along with the hepatic expression of leptin receptors (ObR-a, -b, and -e) and peroxisome proliferator-activated receptor α (PPARα) and peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α), were measured in all the animals. Intra-abdominal fat depots were increased under the HF but not under the HC diet. As expected, exercise training decreases intra-abdominal adiposity in animals fed with the SD and the HF diet, and to a lesser extent in HC-fed rats. Plasma leptin levels either expressed in absolute values or in values relative to adiposity levels were significantly (P < 0.05) increased with the HF diet and significantly decreased in TR animals, independently of the diet. Moreover, a significant (< 0.01) reduction in hepatic gene expression of ObR-a, -b and -e was found in TR animals in all the three diet conditions. PPARα and PGC-1α mRNAs were also decreased (P < 0.05) in TR animals in two out of three diet conditions. The present findings indicate that exercise training-induced decrease in plasma leptin levels is accompanied by a reduction in gene expression of three different isoforms of leptin receptors in liver.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号