首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation kinetics of skinned cardiac muscle by laser photolysis of nitrophenyl-EGTA
Authors:Martin Hunter  Bell Marcus G  Ellis-Davies Graham C R  Barsotti Robert J
Institution:Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
Abstract:The kinetics of Ca(2+)-induced contractions of chemically skinned guinea pig trabeculae was studied using laser photolysis of NP-EGTA. The amount of free Ca(2+) released was altered by varying the output from a frequency-doubled ruby laser focused on the trabeculae, while maintaining constant total NP-EGTA] and Ca(2+)]. The time courses of the rise in stiffness and tension were biexponential at 23 degrees C, pH 7.1, and 200 mM ionic strength. At full activation (pCa < 5.0), the rates of the rapid phase of the stiffness and tension rise were 56 +/- 7 s(-1) (n = 7) and 48 +/- 6 s(-1) (n = 11) while the amplitudes were 21 +/- 2 and 23 +/- 3%, respectively. These rates had similar dependencies on final Ca(2+)] achieved by photolysis: 43 and 50 s(-1) per pCa unit, respectively, over a range of Ca(2+)] producing from 15% to 90% of maximal isometric tension. At all Ca(2+)], the rise in stiffness initially was faster than that of tension. The maximal rates for the slower components of the rise in stiffness and tension were 4.1 +/- 0.8 and 6.2 +/- 1.0 s(-1). The rate of this slower phase exhibited significantly less Ca(2+) sensitivity, 1 and 4 s(-1) per pCa unit for stiffness and tension, respectively. These data, along with previous studies indicating that the force-generating step in the cross-bridge cycle of cardiac muscle is marginally sensitive to Ca(2+)], suggest a mechanism of regulation in which Ca(2+) controls the attachment step in the cross-bridge cycle via a rapid equilibrium with the thin filament activation state. Myosin kinetics sets the time course for the rise in stiffness and force generation with the biexponential nature of the mechanical responses to steps in Ca(2+)] arising from a shift to slower cross-bridge kinetics as the number of strongly bound cross-bridges increases.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号