首页 | 本学科首页   官方微博 | 高级检索  
     


Dissimilatory perchlorate reduction: a review
Authors:Bardiya Nirmala  Bae Jae-Ho
Affiliation:a Department of Civil and Environmental Engineering, Inha University, Inchon 402-751, South Korea
b Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
Abstract:In the United States anthropogenic activities are mainly responsible for the wide spread perchlorate contamination of drinking water, surface water, groundwater, and soil. Even at microgram levels, perchlorate causes toxicity to flora and fauna and affects growth, metabolism and reproduction in humans and animals. Reports of antithyroid effects of perchlorate and its detection in common food items have raised serious public health concerns, leading to extensive decontamination efforts in recent years. Several physico-chemical removal and biological decontamination processes are being developed. Although promising, ion exchange is a non-selective and incomplete process as it merely transfers perchlorate from water to the resin. The perchlorate-laden spent resins (perchlorate 200-500 mg L−1) require regeneration resulting in production of concentrated brine (6-12% NaCl) or caustic waste streams. On the contrary, biological reduction completely degrades perchlorate into O2 and innocuous Cl. High reduction potential of ClO4/Cl (E° = ∼1.28 V) and ClO3/Cl pairs (E° = 1.03 V) makes these contaminants thermodynamically ideal e acceptors for microbial reduction. In recent years unique dissimilatory perchlorate reducing bacteria have been isolated and detailed studies pertaining to their microbiological, biochemical, genetics and phylogenetic aspects have been undertaken which is the subject of this review article while the various physico-chemical removal and biological reduction processes have been reviewed by others.
Keywords:Perchlorate reducing bacteria   Perchlorate reductase   Chlorite dismutase
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号