首页 | 本学科首页   官方微博 | 高级检索  
     


Rapid laser flash photoaffinity labeling of binding sites for a noncompetitive inhibitor of the acetylcholine receptor
Authors:P Muhn  A Fahr  F Hucho
Abstract:Photoaffinity labeling of the nicotinic acetylcholine receptor from Torpedo marmorata electric tissue was performed in the presence of cholinergic effectors in the millisecond to second time range by a combination of a stopped-flow apparatus and a high-energy pulse laser. The label applied was [3H]triphenylmethylphosphonium, a lipophilic cation previously shown to be a specific blocker of the acetylcholine receptor ion channel. With the receptor in the resting state most of the label was incorporated into the alpha polypeptide chains. In the presence of agonists and antagonists increasing incorporation into the delta- and (less pronounced) the beta-chain was observed. The time course of this increase had a half-life of about 0.4 s, being slower than receptor activation and channel opening. in the resting, active, and even rapidly desensitized state, the alpha polypeptide chains appear to be the primary targets of the photoaffinity reaction. The action spectrum of the photolabeling has a sharp maximum at lambda = 270 nm and a small-side maximum at lambda = 290 nm. It does not resemble the absorption spectrum of the label and may hint at amino acid side chains as the moieties activated by UV light causing the photolabeling. The effector specificity of the observed slow increase of label incorporation into the delta polypeptide chain was investigated. It does not prove that slow desensitization is the underlying event. The agonists acetylcholine and carbamoylcholine as well as treatment of receptor-rich membranes with phospholipase A2 (but not phospholipase D) triggered labeling of delta, but antagonists such as D-tubocurarine and most conspicuously flaxedil had a similar effect.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号