首页 | 本学科首页   官方微博 | 高级检索  
     


Fluorometric studies of aza-epsilon-adenylylated glutamine synthetase from Escherichia coli
Authors:S G Rhee  G A Ubom  J B Hunt  P B Chock
Abstract:Glutamine synthetase in Escherichia coli is regulated by adenylation and deadenylation reactions. The adenylation reaction converts the divalent cation requirement of the enzyme from Mg2+ to Mn2+. Previously, the catalytic action of unadenylated glutamine synthetase was elucidated by monitoring the intrinsic tryptophan fluorescence change accompanying substrate binding. However, due to the lack of changes in the tryptophan fluorescence, a similar study could not be done with the adenylated enzyme. In this study, therefore, an extrinsic fluor is introduced into the adenylated glutamine synthetase by adenylating the enzyme with 2-aza-1,N6-ethenoadenosine triphosphate, a fluorescent analog of ATP. The modified enzyme (aza-epsilon-glutamine synthetase) exhibits catalytic and kinetic properties similar to those of the naturally adenylated enzyme. The results of fluorometric studies on this aza-epsilon-glutamine synthetase indicated that L-glutamate and ATP bind to both Mn2+ and Mg2+ forms of the enzyme in a random order, but only the Mn2+ form is capable of forming a highly reactive enzyme-bound intermediate which is a prerequisite for the reaction with NH4+ to form products. The extrinsic fluorescence changes are also used to determine the binding constants of various substrates and inhibitors of both the biosynthetic and gamma-glutamyl transfer reactions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号