Variation in Phosphorus Sorption with Soil Particle Size |
| |
Authors: | Asmare Atalay |
| |
Affiliation: | Virginia State University, Center of Excellence for Plants and Water Quality, P.O. Box 9005, Petersburg, VA 23806 |
| |
Abstract: | Phosphorus (P) is considered a primary cause for surface water eutrophication that leads to anoxia. Understanding the relationships between soil particle size and P sorption helps devise effective best management practices (BMPs) to control P transport by erosion, leaching, and overland flow from agricultural land. Consequently, this study examined the effect of surface soil particle size on the sorption of P in five soil series (four Ultisols and one Entisol) from the Mid-Atlantic region. The sorption of P in each soil was assessed by equilibrating (after shaking for 24?h) 5?g soil containing varied amounts of KH2PO4 in 20?mL of 0.01?M KCl solution. Phosphorus in solution was determined by the molybdate blue method of Murphy and Riley. The P adsorption characteristics of these soils were described using the Langmuir isotherm. Results indicated that variability in P sorption was related to particle size and soil type. Soil organic matter content contributed a great deal to P sorption in the Entisol. However, soil clay had influence on the P sorption characteristics of each soil. The maximum P retentive capacities of soils (as determined by Sm from Langmuir equation) and P sorbed at 500?mg P kg?1 addition showed a linear relationship (r2 = 0.94). Therefore, based on the results obtained, the single point method of Bache and Williams may be appropriate to describe the maximum P sorption capacity of non-sandy soils, as observed in this study. |
| |
Keywords: | phosphorus particle size sorption soil. |
|
|